Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Abstract Greater tree diversity often increases forest productivity by increasing the fraction of light captured and the effectiveness of light use at the community scale. However, light may shape forest function not only as a source of energy or a cause of stress but also as a context cue: Plant photoreceptors can detect specific wavelengths of light, and plants use this information to assess their neighborhoods and adjust their patterns of growth and allocation. These cues have been well documented in laboratory studies, but little studied in diverse forests. Here, we examined how the spectral profile of light (350–2200 nm) transmitted through canopies differs among tree communities within three diversity experiments on two continents (200 plots each planted with one to 12 tree species, amounting to roughly 10,000 trees in total), laying the groundwork for expectations about how diversity in forests may shape light quality with consequences for forest function. We hypothesized—and found—that the species composition and diversity of tree canopies influenced transmittance in predictable ways. Canopy transmittance—in total and in spectral regions with known biological importance—principally declined with increasing leaf area per ground area (LAI) and, in turn, LAI was influenced by the species composition and diversity of communities. For a given LAI, broadleaved angiosperm canopies tended to transmit less light with lower red‐to‐far‐red ratios than canopies of needle‐leaved gymnosperms or angiosperm‐gymnosperm mixtures. Variation among communities in the transmittance of individual leaves had a minor effect on canopy transmittance in the visible portion of the spectrum but contributed beyond this range along with differences in foliage arrangement. Transmittance through mixed species canopies often deviated from expectations based on monocultures, and this was only partly explained by diversity effects on LAI, suggesting that diversity effects on transmittance also arose through shifts in the arrangement and optical properties of foliage. We posit that differences in the spectral profile of light transmitted through diverse canopies serve as a pathway by which tree diversity affects some forest ecosystem functions.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Summary Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal‐associated tree species in these relationships.Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees.Our study provides novel explanations for variations in diversity–productivity relationships by suggesting that tree–mycorrhiza interactions can shape productivity in mixed‐species forest ecosystems.more » « less
-
Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.more » « less
-
As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme.more » « lessFree, publicly-accessible full text available October 16, 2026
-
ABSTRACT Mixed‐species forestry is a promising approach to enhance productivity, increase carbon sequestration, and mitigate climate change. Diverse forests, composed of species with varying structures and functional trait profiles, may have higher functional and structural diversity, which are attributes relevant to a number of mechanisms that can influence productivity. However, it remains unclear whether the context‐dependent roles of functional identity, functional diversity, and structural diversity can lead to a generalized understanding of tree diversity effects on stand productivity. To address these gaps, we analyzed growth data from 83,600 trees from 89 species across 21 young tree diversity experiments spanning five continents and three biomes. Results revealed a positive saturating relationship between tree species richness and stand productivity, with reduced variability in growth rates among more diverse stands. Structural equation modeling demonstrated that functional diversity mediated the positive effects of species richness on productivity. We additionally report a negative relationship between structural diversity and productivity, which decreased with increasing species richness. When partitioning net diversity effects, we found that selection effects played a dominant role in driving the overall increase in productivity in these predominantly young stands, contributing 77% of the net diversity effect. Selection effects increased with diversity in wood density. Furthermore, acquisitive species with lower wood density and higher leaf nitrogen content had higher productivity in more diverse stands, while conservative species showed neutral to slightly negative responses to species mixing. Together, these results suggest that combining acquisitive with conservative species allows acquisitive species to drive positive selection effects while conservative species tolerate competition. Thus, contrasting resource‐use strategies can enhance productivity to optimize mixed‐species forestry, with potential for both ecological and economic benefits.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
